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Highlights 

 We present the first genome-scale model of the metabolism of Streptococcus 
pyogenes 

 We experimentally tested the model using diverse data sets, e.g. auxotrophy 
experiments 

 The model allows to understand and predict growth requirements of S. 
pyogenes in detail.  

 The mechanism of pH adaptation in this organism is studied in detail.  
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Abstract 

Genome-scale metabolic models comprise stoichiometric relations between 

metabolites, as well as associations between genes and metabolic reactions and 

facilitate the analysis of metabolism. We computationally reconstructed the 

metabolic network of the lactic acid bacterium Streptococcus pyogenes M49. 

Initially, we based the reconstruction on genome annotations and already existing 

and curated metabolic networks of Bacillus subtilis, Escherichia coli, Lactobacillus 

plantarum and Lactococcus lactis. This initial draft was manually curated with the 

final reconstruction accounting for 480 genes associated with 576 reactions and 558 

metabolites. In order to constrain the model further, we performed growth 

experiments of wild type and arcA deletion strains of Streptococcus pyogenes M49 

in a chemically defined medium and calculated nutrient uptake and production 

fluxes. We additionally performed amino acid auxotrophy experiments to test the 

consistency of the model. The established genome-scale model can be used to 

understand the growth requirements of the human pathogen S. pyogenes and define 

optimal and suboptimal conditions, but also to describe differences and similarities 

between S. pyogenes and related lactic acid bacteria such as L. lactis in order to find 

strategies to reduce the growth of the pathogen and propose drug targets. 

Keywords: Genome-scale metabolic model; metabolism; Streptococcus pyogenes; 

amino acid auxotrophies; lactic acid bacteria 
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1. Introduction 

Streptococcus pyogenes (group A streptococcus [GAS]) belongs to the group of 

lactic acid bacteria (LAB) which are characterised by their capability to ferment 

glucose to lactic acid. LAB colonize multiple biotopes, including foods, plants or the 

human body. There is a great biodiversity amongst lactic acid-producing bacteria 

with respect to their genetics and consequent biochemical details, reflected in 

differences in acidification and pathogenicity. Some LAB play essential roles in food 

and beverage industry (e.g. for fermentation), while others, such as GAS possess 

pathogenic features (Levering et al., 2012). 

S. pyogenes is one of the most widespread human pathogens and colonises the 

skin, tonsils, mucous membrane and deeper tissues. It causes many different 

infections such as pharyngitis, scarlet fever, impetigo, necrotizing fasciitis and 

streptococcal toxic shock syndrome. S. pyogenes can also cause immune-mediated 

post-infectious sequelae like acute rheumatic fever and acute glomerulonephritis 

(Walker et al., 2014). 

In general, lactic acid bacteria have evolved in environments that are rich in amino 

acids, vitamins, purines and pyrimidines. As a consequence, they have complex 

nutritional requirements. Species differ in their ability to ferment individual 

carbohydrates and in their preferred carbon source (Gunnewijk et al., 2001). The 

most commonly used sugar for their cultivation is glucose. Growth of LAB requires 

supply of vitamins and related growth factors like p-aminobenzoic acid, biotin, 

riboflavin, thiamine, vitamin B6 and vitamin B12, whereby the amount of required 

growth factors differ among the organisms. The amount and combination of amino 
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acids required for growth is characteristic for each LAB and depends upon the 

medium composition, e.g. again on the supplied vitamins. However, even if all 

vitamins are supplied in excess, lactic acid bacteria still require many amino acids 

for growth. Additionally, purine and pyrimidine bases are required which are 

precursors for nucleic acid synthesis. Besides its function as a buffer, acetate 

stimulates growth of most LAB. Furthermore, inorganic salts of potassium, 

manganese, magnesium and phosphoric acid are required by lactic acid bacteria. 

These complex nutritional requirements indicate that many biochemical pathways 

present in other organisms are absent in lactic acid bacteria (Tittsler et al., 1952). 

In order to explore and understand the growth requirements of the human pathogen 

S. pyogenes we reconstructed the genome-scale metabolic network of this 

bacterium. The reconstructed metabolic network aids the identification of similarities 

and differences between GAS and related lactic acid bacteria. Understanding S. 

pyogenes' metabolism and responses to different growth environments will also aid 

the development of strategies to reduce its growth and to identify possible drug 

targets in the future. 

Genome-scale models comprise a list of associations between reactions, enzymes, 

substrates and products, i.e. the stoichiometry of all metabolic reactions. They can 

be used e.g. to explore the response of an organism's metabolism to changes in its 

environment, gain insights into the genotype-phenotype relationship, identify the 

physiological states which are achievable by a given metabolic network or analyse 

perturbations like gene deletions or drug applications (Durot et al., 2009). The 

construction of a genome-scale model is based on the organism's genome and 



6 

 

requires a large amount of knowledge about the organism's metabolism when done 

in a careful and curated manner. 

Genome-scale metabolic networks have been developed for many organisms 

including LAB such as Lactococcus lactis (Flahaut et al., 2013; Oliveira et al., 2005; 

Verouden et al., 2009), Lactobacillus plantarum (Teusink et al., 2006), 

Streptococcus thermophilus (Pastink et al., 2009) and very recently Enterococcus 

faecalis (Veith et al., 2015). 

In this paper we present the reconstruction of the metabolic network of S. pyogenes 

strain 591, a serotype M49 strain. We concentrated on all metabolic reactions 

essential for cell growth, i.e. reactions involved in nucleotide biosynthesis and 

production of DNA and RNA, protein biosynthesis, the synthesis of membranes, cell 

wall and capsule components, primary and (poly)saccharide metabolism, amino acid 

metabolism, pathways for the synthesis of fatty acids and the production of vitamins 

and cofactors. 

To speed up the development of the first genome-scale model of GAS the 

AUTOGRAPH method (Notebaart et al., 2006) was used. AUTOGRAPH is a semi-

automatic approach facilitating the generation of draft reconstructions. Based on 

orthology search against genomes of related organisms with available metabolic 

reconstructions metabolic genes in the organism of interest’s genome and their 

corresponding metabolic functions are predicted. Here, we exploited the manually 

curated metabolic networks of Bacillus subtilis 168 (Oh et al., 2007), Escherichia coli 

K12 (Feist and Palsson, 2010), Lactobacillus plantarum WCFS1 (Teusink et al., 

2006) and Lactococcus lactis subsp. cremoris MG1363 (Verouden et al., 2009). This 

step was followed by a manual curation of the initial reconstruction which included a 
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consistency check and gap filling. In order to analyse the metabolic capabilities of 

the reconstruction PySCeS CBMPy (Olivier et al., 2005) was used and flux balance 

analysis (FBA) (Price et al., 2004; Varma and Palsson, 1994) was applied to find a 

feasible and optimal solution. 

The whole genome-scale metabolic model was used to simulate our fermentation 

data of S. pyogenes M49 wild type and a corresponding arcA deletion strain. 

Furthermore, the model was used to explore the organism’s reaction to perturbations 

in its environment, such as amino acid omissions, and to find strategies to reduce 

the growth of S. pyogenes and to propose drug targets by identifying essential 

genes. 
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2. Materials and Methods 

2.1 Bacterial strains and growth conditions 

S. pyogenes M49 591 wild type and corresponding arcA deletion strains were grown 

in static batch cultures at 37°C in either Todd-Hewitt broth supplemented with 0.5% 

(wt/vol) yeast extract (Oxoid) or a chemically defined medium for Lactic Acid 

Bacteria (CDM-LAB). CDM-LAB was essentially composed as described previously 

(Fiedler et al., 2011; Jonsson et al., 2009) with two exceptions: the arginine 

concentration was 0.5 g/L and the medium additionally contained 30 mM NaHCO3 

(see Table A1). GAS arcA deletion strain was maintained in medium containing 60 

mg/liter spectinomycin. Escherichia coli DH5α harboring pASK-IBA3c derivative was 

grown on lysogeny broth (LB) medium supplemented with 300 mg/liter erythromycin, 

60 mg/liter spectinomycin, or 20 mg/liter chloramphenicol, respectively. All E. coli 

cultures were grown at 37°C under ambient air conditions. 

2.2 Chemostat cultures 

S. pyogenes M49 wild type and mutant strains were grown in anaerobic glucose-

limited chemostat cultures in CDM-LAB as described previously (Fiedler et al., 2011; 

Levering et al., 2012). In brief, cultures were grown at 37°C in a Biostat Bplus 

fermentor unit with a total volume of 750 ml at a stirring rate of 150 rpm. The pH was 

maintained at the indicated value by titrating with sterile 2 M KOH. Growth rates 

were controlled by the medium dilution rate (D; 0.05 h-1). Culture volume was kept 

constant by removing culture liquid at the same rate that fresh medium was added. 

The cultures were considered to be in steady-state when no detectable glucose 

remained in the culture supernatant and the optical densities (ODs), dry weights 
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(DWs), and product concentrations of the cultures were constant on two consecutive 

days. 

2.3 Analysis of carbon fluxes 

Glucose, pyruvate, lactate, formate, acetate, succinate and ethanol were determined 

by high-pressure liquid chromatography (HPLC, LKB) with a Rezex organic acid 

analysis column (Phenomenex) at a temperature of 45°C with 7.2 mM H2SO4 as the 

eluent, using a RI 1530 refractive index detector (Jasco) and AZUR chromatography 

software for data integration. Aspartic acid, serine, glutamic acid, glycine, histidine, 

arginine, threonine, alanine, proline, cysteine, tyrosine, valine, methionine, lysine, 

isoleucine, leucine and phenylalanine were determined by HPLC (Agilent) by use of 

the Waters AccQ Tag method. Fluorescence was analysed using a Hitachi F-1080 

fluorescence detector set to 250 nm excitation and emission was recorded at 395 

nm (Fiedler et al., 2011). 

2.4 Amino acid auxotrophy and minimal media experiments 

S. pyogenes M49 was precultured overnight in static batch cultures at 37°C using 

Todd-Hewitt broth supplemented with 0.5% (wt/vol) yeast extract (Oxoid). After 

washing in PBS cells were inoculated in CDM-LAB. To determine the amino acid 

auxotrophies, single amino acids or combinations of amino acids were omitted from 

the CDM-LAB. Washed GAS cells were inoculated at an optical density (600 nm; 

OD600) of 0.05-0.075 and incubated statically for 24 h at 37°C using 3 ml of medium 

in 15 ml capped tubes. Growth was monitored by visual inspection and OD600 

measurements. In case of poor, but visible growth (i.e. final OD600 below 1), cells 

were used for re-inoculation in the same medium to confirm prototrophy for the 
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respective amino acid(s). Omissions of other medium components such as 

nucleotide precursors or vitamins were done accordingly. All omissions have been 

tested using at least two independently prepared media and at least four separate 

inoculations. 

2.5 Construction of recombinant vector and GAS strain 

Chromosomal DNA of S. pyogenes M49 was extracted with the DNeasy Blood and 

Tissue Kit (Qiagen, Hilden, Germany) and used as template for PCR amplification of 

the upstream and downstream flanking regions of the arcA gene, respectively. 

Plasmid pFW5 served as a template for amplification of the spectinomycin 

resistance gene casette aad9. All PCR amplifications were done with Phusion Taq 

Polymerase (Biozym). All PCR products were purified using the QIAquick PCR 

purification kit (Qiagen). Sizes of the PCR products and corresponding primers are 

listed in Table A2. For the construction of the arcA deletion plasmid, the PCR 

fragments of the arcA upstream and downstream flanking sequences were fused via 

EcoRV restriction sites and ligated into plasmid pASK-IBA3c via BamHI and HindIII 

restriction sites. The aad9 cassette was ligated between the flanking regions via 

EcoRV restriction sites. E. coli DH5α was used for sub-cloning of pASK-IBA3c 

derivatives.  

The resulting recombinant vector, pASK-IBA3c_arcA_ko, was transformed into S. 

pyogenes M49 wild type cells. The resulting transformants were screened for 

spectinomycin resistance. Double crossover events resulting in the deletion of the 

respective genes were confirmed by appropriate PCR and Northern Blot analyses. 

2.6 Metabolic network reconstruction and modelling 
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The AUTOGRAPH method (Notebaart et al., 2006) was applied to the Genbank 

NCBI (Bilofsky et al., 1988) annotation file of S. pyogenes M49 NZ131 (McShan et 

al., 2008) which is the only complete determined genome sequence of a GAS M49 

serotype and four manually curated metabolic networks from Bacillus subtilis 168 

(Oh et al., 2007), Escherichia coli K12 (Feist et al., 2007), Lactobacillus plantarum 

WCFS1 (Teusink et al., 2006) and Lactococcus lactis subsp. cremoris MG1363 

(Verouden et al., 2009). The identification of genes having most likely an identical 

biological function in different organisms is based on orthology detection by 

INPARANOID (Remm et al., 2001). The output of AUTOGRAPH assigns each 

metabolic gene from the query genome a protein function. Additionally, orthologous 

genes from each reference organism and a reaction associated to the gene 

according to the reference organism’s metabolic network are listed. 

Subsequent manual curation of the initial metabolic network involved identification 

and resolving of inconsistencies and gaps, and introducing organism specific 

reactions as described in detail in (Thiele and Palsson, 2010). The network was 

completed by searching biochemical and metabolic databases such as UniProt (The 

Uniprot Consortium, 2010), BRENDA (Schomburg et al., 2002), KEGG (Kanehisa 

and Goto, 2000) and NCBI (Geer et al., 2010) as well as journal publications. 

Information regarding transport proteins was obtained from TransportDB (Ren et al., 

2007) and TCDB (Saier et al., 2014). 

To identify missing genes and proteins we performed homology searches using the 

blastp suite on the NCBI webserver with default settings. If no gene could be 

identified although experimental evidence about the presence of a certain metabolic 

reaction exists or the reaction is required to simulate growth, the reaction was 
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included as non-gene associated reaction. Reaction names and equations for the 

metabolic networks were mainly derived from the genome-scale models of L. lactis 

and L. plantarum. Species-specific reaction equations were manually created and 

named. Gene-protein-reaction assignments were based on the reference genome-

scale models and the previously mentioned databases. 

2.7 Flux balance analysis 

The model was simulated and analysed using PySCeS CBMPy 

(http://cbmpy.sourceforge.net) (Olivier et al., 2005) which is a platform for constraint-

based modelling and analysis. PySCeS CBMPy implements analyses such as flux 

balance analysis (FBA), flux variability analysis (FVA), element/charge balancing, 

and model editing (Olivier et al., 2005). We used the IBM ILOG CPLEX solver (IBM, 

2012) which is free for academic uses. 

Mathematically, the reconstructed metabolic network is represented by the 

stoichiometric matrix S. In this matrix, each row represents a mass balance of a 

metabolite and each column represents a reaction. Elements of the matrix are the 

stoichiometric coefficients. Given that the simulated system is in steady-state it can 

be simulated by the equation S·•·v = 0 where the vector v describes all fluxes 

through the network. FBA (Price et al., 2004; Varma and Palsson, 1994) was applied 

to analyse feasible and optimal flux distributions of the developed stoichiometric 

model. Constraints based on physiological aspects or experimental data were added 

to the individual metabolic fluxes as upper and lower boundaries to reduce the space 

of allowable flux distributions of the system. Measured concentrations were 
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transformed into fluxes of utilisation (qi) given in mmol gDW-1 h-1 by 

 

with Ci is the concentration of metabolite i in mmol per liter, Xbiomass is the measured 

biomass concentration in gDW per liter and D is the dilution rate per hour. We 

subsequently defined the lower bound (LB) and upper boundary (UB) of the 

exchange fluxes in the model by the upper and lower boundaries of the two 

measurements as LB = min(0.9·q1, 0.9·q2) and UB = max(1.1·q1, 1.1·q2). Thus, in 

addition to using the two different measurements as upper and lower bounds, we 

allow another 10% variation to account for the experimental uncertainty. We also 

repeated all calculations with even wider bounds (25%) and confirmed that all results 

are qualitatively the same. Constraining all reactions at once resulted in an infeasible 

problem indicating that some constraints were too tight. Therefore, we applied the 

constraints one at a time and adjusted the boundaries whenever necessary. For 

non-measured medium compounds the lower bound was calculated based on the 

concentration in CDM-LAB and the upper bound was set to 1000. For non-measured 

amino acids which are present in the medium (i.e., asparagine, cysteine, glutamine, 

tryptophan) we used -1 and 0 for the lower and upper boundaries. We selected -1 to 

resemble the fluxes of the measured amino acids. However, applying -1000, 1000 

would give the same results. The applied constraints are given in Table A3. 

As objective function we have chosen the biomass production. It comprises biomass 

components and growth-associated ATP consumption and its stoichiometric 

coefficients represent the molar quantities that are required to produce one gram of 

dry weight. Due to lacking information about the biomass composition of GAS in 
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literature, the biomass composition of a recent L. lactis reconstruction (Flahaut et al., 

2013) was used. The biomass objective function includes vitamins and vitamin-

derived cofactors to model vitamin requirements, namely co-enzyme A, NAD, 

tetrahydrofolate, thiamin pyrophosphate and undecaprenol (lipid II). Although 

vitamins do not make a quantitative impact, their inclusion in the biomass equation 

ensures that deletions that interfere with metabolism of essential vitamins are also 

lethal in the model. Additionally, reactions involved in the metabolic pathways for the 

following vitamins and cofactors were included in the reconstruction: NADP, 

molybdenum cofactor, riboflavin, thioredoxine, glutathione, biotin, vitamin C, vitamin 

B6, pyridoxal 5-phosphate. By constraining the model’s nutrient uptake rates with 

experimental measurement this objective can be used to simulate microbial growth 

rates. From the resulting set of allowable flux distributions the optimal metabolic flux 

distribution was determined using linear programming under the steady-state 

criteria. Simulation results were compared with our experimental data and in case of 

discrepancies the model was adjusted accordingly based on information found in 

literature or databases. 

Within the model, the growth rate is represented by the flux through the biomass 

reaction when constraining nutrient uptake rates with experimental measurements. 

Under steady-state conditions the growth rate equals the dilution rate. Therefore, we 

compared the simulated flux through the biomass objective function with the dilution 

rate of 0.05 h-1
 
used in our experiments. 

2.8 Estimation of energetic parameters 

The genome-scale metabolic model distinguishes between growth associated 

maintenance (GAM, mmol gDW-1) and non-growth associated maintenance (NGAM, 
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mmol DW-1 h-1). GAM defines the ATP required for biomass assembly and is 

accounted for in the biomass equation itself. This parameter was adapted from the 

L. lactis model and is set to 39.4 mmol ATP per gDW (Flahaut et al., 2013). The 

NGAM parameter was estimated from the model. After implementing the constraints 

according to our experimental data the NGAM was obtained by fixing the flux 

through the biomass reaction to the experimentally observed growth rate (since we 

constrain nutrient uptake fluxes in the model, biomass reaction flux represents 

growth rate in units h-1) and maximizing the flux through the ATP maintenance 

reaction. The observed objective value equals the NGAM parameter and was used 

to constrain the ATP maintenance reaction. The calculated NGAM is rather high 

compared to similar reconstructions, e.g. of L lactis, and is probably an 

overestimate. This underlines that biomass composition for S. pyogenes needs to be 

better understood to be able to compute this more realistically. 

2.9 Amino acid auxotrophies 

To test the essentiality of single amino acids or combinations in silico we blocked the 

amino acid uptake from the medium, i.e. we set the lower bound for this amino acid's 

exchange reaction to zero. The organism's ability to grow in the absence of this 

amino acid was tested using FBA. Note that we used the genome-scale model wide 

flux boundaries (i.e. with boundaries set to +/-1000 or zero which is referred to as 

unconstrained genome-scale model in the following) since the corresponding 

experiments were performed in batch cultures. 

2.10 Flux variability analysis 
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Often the FBA solution is not unique and different flux distributions exist satisfying 

the constraints and having the same quantitative objective value. To study these 

alternative optimal flux distributions flux variability analysis (FVA) (Mahadevan and 

Schilling, 2003) was performed. In a first step the objective value is calculated by 

solving the linear program. From this solution the range of flux variability for all 

reactions in the network is calculated by fixing the objective value and maximizing 

and subsequently minimizing the flux of each reaction in the network. FVA helps to 

identify robustness within the metabolic network. Reactions with low flux variability 

are likely to be more important to an organism compared to reactions allowing a 

higher variability of fluxes. 

2.11 Gene essentiality analysis 

We studied the effect of a single gene deletion in the metabolic network of S. 

pyogenes by subsequently knocking out each gene within the network and setting 

the associated reactions to carrying no flux. FBA was used to predict the growth of 

the mutant strain. If the objective function value is lower than a certain threshold 

(here 5%) of the objective value without gene knock-out, the knock-out is considered 

to be lethal and the respective gene to be essential, otherwise the gene is 

considered to be not essential. 

2.12 Minimal medium prediction 

Using the constructed genome-scale model we predicted a minimal medium by 

omitting one CDM-LAB component at a time and testing if this compound is 

essential by performing FBA (Borenstein et al., 2008; Handorf et al., 2008). The 

predicted minimal medium consists of all essential CDM-LAB compounds. 
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3. Results 

3. 1Setting up the genome-scale model 

The reconstruction process is divided into four main steps (Thiele and Palsson, 

2010) and starts with the reconstruction of a draft network based on S. pyogenes' 

genome annotation and protein homology to related organisms with available 

reconstructions (see Materials and Methods for more details on the reconstruction 

process). Second, the draft reconstruction was manually curated using additional 

resources such as primary literature and external databases. In the third step the 

curated reconstruction was converted into a mathematical model. We defined 

system boundaries, i.e., nutrient uptake and product secretion, according to the 

experimental set-up. The fourth and final step consists in network verification and 

evaluation. We verified that all biomass components could be synthesized and 

identified missing functions by comparison with known phenotypes and refined the 

model in an iterative manner if necessary. 

3.1.1 Metabolic network reconstruction and initial analysis 

We reconstructed the metabolic network of S. pyogenes M49 based on 

AUTOGRAPH, a semi-automatic approach which takes advantage of already 

existing and manually curated models (Notebaart et al., 2006). The draft 

reconstruction was manually curated using different databases and primary literature 

(see Materials and Methods). The final reconstruction comprised all reactions that 

are required to simulate growth in CDM-LAB (Fiedler et al., 2011; Jonsson et al., 

2009) and contains 480 genes associated with 576 reactions and 558 metabolites. 
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This final version significantly differs from all individual models originally used as 

data basis. Thus, compared to the model of L. lactis, there are 403 reactions in 

common, but also 102 reactions in our model that are not present in L. lactis and 

239 reactions in L. lactis that do not occur in our model. Similar numbers hold true 

for L. plantarum (see Figure S1). 

According to the experimental set-up, the growing cell was simulated by a model in 

steady-state with continuous in- and outflow of CDM-LAB and metabolic products 

from the reaction vessel. Exchange reactions were defined depending on the 

simulated growth experiment whereas transport reactions were given by the abilities 

of the cultivated organism to take up or secrete substances. Since transporters in S. 

pyogenes are poorly studied, required reactions were incorporated based on 

experimental findings, e.g. measurement of pyruvate in the supernatant, or adopted 

from the L. lactis model (Verouden et al., 2009). An overview of the model features 

and the list of reactions is given in Table 1 and Table A4, respectively. 

The network reconstruction facilitated gaining insight into the metabolic capabilities 

of S. pyogenes. In the following we will discuss some points of special interest that 

occurred during metabolic reconstruction specifically for S. pyogenes. 

First of all, the model reflects that GAS lacks the adenylate cyclase like all other 

Gram-positive bacteria (Stewart, 1993), and, thus, no cyclic adenosine 

monophosphate is produced. Furthermore, the model reflects that no glutaminyl-

tRNA ligase (EC 6.1.1.18) exists in S. pyogenes as previously observed for L. 

plantarum (Teusink et al., 2006). Instead, a glutamyl-tRNA amidotransferase (EC 

6.3.5.-) is present which allows the formation of correctly charged glutaminyl-tRNA 

through the transamidation of misacylated Glu-tRNA(Gln). Interestingly, and in 
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contrast to S. pyogenes, L. lactis possesses tRNA(Gln) and a glutaminyl-tRNA 

ligase. Since we used the L. lactis specific biomass objective function (see Materials 

and Methods), the respective contribution had to be changed to not rely on 

tRNA(Gln), but rather incorporate more tRNA(Glu). 

Phospholipid biosynthesis is poorly studied for S. pyogenes. However, compounds 

synthesized in this pathway are essential for cell wall and lipoteichoic acid (LTA) 

production. Therefore, phospholipid biosynthesis was assumed to be present in S. 

pyogenes and the essential enzymes in this pathway were copied from the L. lactis 

reconstruction. Since GAS teichoic acid is free of ribitol (Matsuno and Slade, 1970) 

and is present in the form of LTA in S. pyogenes (Slabyj and Panos, 1976), 

reactions including ribitol teichoic acid or wall teichoic acids were removed from the 

model. 

Like all other LAB, S. pyogenes has an incomplete tricarboxylic acid (TCA) cycle 

with the consequence that no succinyl-CoA is produced. Therefore, reactions that 

require succinyl-CoA in other organisms were changed to use acetyl-CoA in the 

model. Hereby, we follow Francke et al. (Francke et al., 2005) who suggested this 

for L. lactis. Thus, this bacterium relies on glycolysis and pyruvate metabolism for 

energy production. Due to the defective TCA cycle S. pyogenes is not able to 

synthesize precursors for most amino acids. As described in more detail in the 

model testing section, S. pyogenes is auxotroph for 11 amino acids. Although all 

genes necessary for the conversion of histidine into glutamate are annotated in S. 

pyogenes (see KEGG histidine pathway, soz00340), our experimental data showed 

that S. pyogenes does not grow in the absence of glutamine and glutamate (also 

see below). This indicates that the conversion of histidine to glutamine is not working 
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in vivo. A reason for this might be the accumulation of one of the intermediates, 

formamide. We could not find any information about a formamide consuming 

reactions in any streptococcus or lactococcus. 

Furthermore, growth of S. pyogenes requires the supply of vitamins, e.g. biotin 

(Mickelson, 1964). This vitamin is involved in fatty acid synthesis and amino acid 

metabolism. Another required vitamin is panthotenate which is needed for coenzyme 

A production. Due to the fact that many thiamine synthesis enzymes are missing in 

S. pyogenes we hypothesize that this compound is essential and needs to be taken 

up from the medium. Riboflavin is also taken up from the medium and is converted 

into flavin adenine dinucleotide, a redox cofactor. The flavin reductase is lacking in 

S. pyogenes and therefore no reduced riboflavin is produced. Furthermore, S. 

pyogenes cannot produce molybdopterin which serves as a cofactor for some 

enzymes in vivo. 

Most enzymes participating in the folate and C1-THF pool synthesis are present 

except for the enzyme catalysing the transformation of dihydropteridine triphosphate 

into 7,8-dihydropteridine, which is one of the first steps. In L. plantarum, two 

enzymes, dihydroneopterin triphosphate pyrophosphatase (DNTPPA, EC 3.6.1.-) 

and dihydroneopterin monophosphate dephosphorylase (DNMPPA, EC 3.6.1.-), are 

catalysing this conversion. In the L. lactis reconstruction this step is catalysed by a 

reaction named unkFol with a so far unknown gene association. In Streptococcus 

pneumoniae this step is catalysed by a membrane-bound alkaline phosphatase (EC 

3.1.3.1). A protein BLAST search of this phosphatase against the S. pyogenes 

NZ131 genome results in the hypothetical protein Spy49_1023c as the sequence 

producing the most significant alignment (maximal score 155, total score 155, query 
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coverage 91%, E-value 3e-48, maximal identity 41%). Since all other enzymes are 

present in this pathway, we included the alkaline phosphatase in the model which, 

interestingly, catalyses the same chemical reaction as unkFol in the L. lactis 

reconstruction. 

Furthermore, the NADPH-dependent enzyme methylene-tetrahydrofolate reductase 

(EC 1.5.1.20) catalysing the conversion of 5,10-methylenetetrahydrofolate into 5-

methyltetrahydrofolate, i.e. the active form of folate, is missing in S. pyogenes. 

Usually, the latter compound is used to recycle homocysteine back to methionine by 

methionine synthase (EC 2.1.1.13). Instead, S. pyogenes posseses a homocysteine 

S-methyltransferase which catalyzes the methionine production from homocysteine 

while converting S-Adenosyl-L-methionine into S-Adenosyl-L-homocysteine (EC 

2.1.1.10). 

3.1.2 Elemental and charge balance 

The curated reconstruction was transformed into a computational model using 

PySCeS CMBPy (Olivier et al., 2005) and all reactions were balanced in terms of 

chemical elements and charge. There are a few exceptions in genome-scale models 

where the reactions in the end are necessarily unbalanced. Model-based input and 

output reactions allow the transfer of mass across the system boundaries and do not 

need to be balanced. In contrast, internal reactions need to be balanced due to the 

steady-state assumption. We used a function implemented in PySCeS CBMPy to 

check any problems with respect to this. In the end, the model contains three 

reactions out of 576 that are unbalanced (see Table A5). One out of these three 

reactions is unbalanced with respect to the chemical composition due to the 

involvement of proteins and the other two reactions are charge unbalanced. 
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Reactions that explicitly or implicitly include proteins cannot be balanced properly in 

a metabolic network since protein synthesis is not included, except as a general 

term for the biomass equation. The charge-imbalanced reactions are involved in LTA 

production. LTAs are large polymers with small fluxes. These three imbalanced 

reactions do not lead to any artificial gain or loss of matter which could have resulted 

in changes in other network fluxes. 

3.1.3 Identification of type III extreme pathways 

Before constraining the model with our measured fluxes we tested the metabolic 

network for the presence of type III extreme pathways. Type III extreme pathways 

are internal cycles that lead to no net conversion of any metabolite and are artefacts 

of metabolic reconstructions (Price et al., 2002; Schilling et al., 2000; Thiele and 

Palsson, 2010). The presence of these cycles was tested by performing a flux 

variability analysis (FVA) and closing all exchange reactions, i.e. setting lower 

boundaries to zero. 

We identified 13 reactions that are involved in these stoichiometrically balanced 

cycles (see Table 3). The ATP- and dATP-dependent guanylate kinases (GK1 and 

GK2, EC 2.7.4.8) and the nucleoside-diphosphate kinase NDPK8 (EC 2.7.4.6) are 

involved in the purine metabolism. By setting the lower boundaries to zero this 

thermodynamically infeasible cycle could be prevented. The second circulation 

group is driven by O2 production through dihydoorotic acid dehydrogenase 

(DHORD1, EC 1.3.3.1) and could be eliminated by constraining the reversibility of 

DHORD1. This inhibits also the circulation of L-lactate oxidase (LOXL, EC 1.13.12.4) 

and L-lactate dehydrogenase (LDH_L, EC 1.1.1.27) as well as glycerol 3-phosphate 

oxidase (G3PO, EC 1.1.3.21) and glycerol-3-phosphate dehydrogenase (G3PD1, 
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EC 1.1.1.94). The last stoichiometrically balanced cycle between the two 

phosphoribosylglycinamide formyltransferases GARFT_met and GARFT (EC 

2.1.2.2) and methenyltetrahydrofolate cyclohydrolase (MTHFC, EC 3.5.4.9) could be 

circumvented by constraining the lower bound of MTHFC to zero. With these 

changes in the model constraints we were able to remove all type III extreme 

pathways. 

3.1.4 Constraining the model with fermentation data 

Flux balance analysis (FBA) (Price et al., 2004; Varma and Palsson, 1994) finds a 

flux distribution through the metabolic network that optimizes an objective function 

given a set of constraints. We used experimentally derived flux values to constrain 

the solution space. Figure 1 shows the experimentally determined fermentation 

pattern of S. pyogenes wild type and arcA deletion strain at two different pHs, 6.5 

and 7.5, and a dilution rate of 0.05 h-1. As a lactic acid bacterium GAS is 

characterised by its capability to ferment glucose primarily to lactate. Under glucose-

limited conditions as studied here, S. pyogenes carries out mixed acid fermentation 

and produces also formate, acetate and ethanol as shown in Figure 1A. At pH 7.5, 

S. pyogenes consumes all measured amino acids except for tyrosine and at pH 6.5 

all amino acids except for aspartate and glutamate (Figure 1B). Typical pH 

adaptations, like an increased uptake of arginine and serine can be seen in the data. 

Knocking out arginine deiminase (ArcA) does not alter the organic acid end-product 

pattern but has a strong impact on amino acid metabolism as shown in Figure 1C 

and Figure 1D. Under the studied conditions, ∆arcA mutants produced alanine, 

aspartate, glutamate, methionine, phenylalanine, proline and threonine. Interestingly, 

∆arcA shows a similar metabolic pattern as the wild type at lower pH, with the 
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obvious exception of arginine uptake. Thus, lactate production as well as serine 

uptake is increased. 

We used the experimentally determined uptake and production fluxes to restrict 

exchange and transport reactions in the model as described in detail in Materials 

and Methods. 

3.1.5 Maintenance and growth-associated energy coefficients 

Energy requirements for growth and maintenance are essential parameters in a 

genome-scale model as described in (Teusink et al., 2006) and need to be specified 

before the model can be used to predict growth rates. The growth associated energy 

parameter is specified in the biomass equation and was set to 39.4 mM/gDW as 

done for L. lactis before (Flahaut et al., 2013). We estimated the non-growth 

associated ATP maintenance parameter (NGAM) from the genome-scale model by 

fixing the biomass flux to 0.05 h-1 and maximizing the flux through the ATP 

maintenance reaction. Our model predicts the NGAM parameter to be i) 6.18 mM 

gDW-1 h-1 for WT pH 6.5, D=0.05 h-1, ii) 5.07 mM gDW-1 h-1 for WT pH 7.5, D=0.05 h-

1 and iii) 2.93 mM gDW-1 h-1 for the ∆arcA mutant strain at pH 7.5, D=0.05 h-1. These 

values are higher than the non-growth associated maintenance values applied in 

models of other lactic acid bacteria (Flahaut et al., 2013) but in the same range as 

experimentally determined for L. lactis NZ9000, Enterococcus faecalis V583 and S. 

pyogenes M49 grown in carbon limited continuous cultures (Fiedler et al., 2011). 

3.2 Model analysis and testing 

3.2.1 Wild type and ∆arcA mutant show different fermentation patterns 
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After applying our measured flux boundaries as constraints and specifying 

maintenance and growth associated energy constants we used FBA and FVA to 

analyse the constructed genome-scale metabolic model. As shown in Table 2 we 

characterized reactions in the model as blocked or essential. Blocked reactions 

cannot carry any flux and indicate gaps or annotation errors in the genome-scale 

model (Ponce-de-León et al., 2013). Alternatively, gaps could be also due to 

reactions that possess a regulatory role which is not impacting a stoichiometric 

model and therefore does not carry flux when calculating feasible flux distributions. A 

reaction was classified as essential if it has to carry flux to allow biomass production 

activity. Additionally, we identified gap metabolites which only take part in blocked 

reactions as done in (Ponce-de-León et al., 2013). Since the respective numbers are 

dependent on the applied constraints they differ between the unconstrained 

complete network and the models simulating our three studied experimental 

conditions. The complete network obviously has the smallest number of essential 

reactions, since there is more flexibility with respect to fluxes and routes. By applying 

more constraints to the model the number of essential reactions required for growth 

increases. However, the ratio between reactions carrying flux (active) and reactions 

not carrying any flux (inactive) does not change between the unconstrained model 

and the ones simulating growth in CDM-LAB. 

Our model was able to fit the growth rate of 0.05 h-1 for the wild type grown at pH 6.5 

and 7.5 and for the arcA knock-out mutant grown at pH 7.5. We used the genome-

scale model to study the different fermentation patterns of the wild type grown at 

different pH values and of the wild type compared with the ∆arcA mutant grown at 

the same experimental conditions. Within the model, the flux distributions for the 
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different pH values result from the distinct experimental constraints. Table A6 and 

Table A7 depict the different fluxes. We used FVA to calculate the flux ranges and 

defined a flux as different, if the absolute difference of the optimal, minimal or 

maximal value is greater than 10-4 between the two conditions. For the wild type, 

134 fluxes were found to be different between pH 6.5 and pH 7.5. For wild type and 

∆arcA mutant 112 fluxes differed. 

Interestingly, the production of ammonium by the deamination of arginine and serine 

which are taken up in higher amounts at lower pH does not directly influence 

intracellular pH in the model, since the deamination reaction at the respective pH do 

not result in proton consumption. It is rather the subsequent production of ATP from 

the products of the deamination reaction that allows to pump more protons out of the 

cell and therefore helps to maintain a higher pH. 

The ∆arcA mutant is obviously unable to generate ATP from arginine. Thus the quite 

similar shift in fermentation pattern which can be reproduced in the model can be 

explained by an increased ATP demand compared to the wild type under the chosen 

experimental conditions. 

3.2.2 Amino acid auxotrophies 

In order to determine the amino acid auxotrophies and prototrophies of S. pyogenes 

we performed growth experiments in CDM-LAB omitting sequentially each of the 20 

proteinogenic amino acids and cystine from the medium, also in combinations. After 

24 h of growth the optical densities (ODs) were determined and compared to growth 

in full CDM-LAB. The omission of alanine, asparagine, aspartic acid, cysteine, 

cystine, glutamine, glutamic acid and proline did not affect the OD compared to the 



27 

 

OD the S. pyogenes cultures reached after 24 h with complete CDM-LAB (Figure 

2A). The omissions of all other amino acids led to a strong decrease in the final 

ODs. For these amino acids repeated re-inoculations in CDM-LAB lacking the 

respective amino acid were performed to account for adaptation in gene expression. 

The experiments revealed that S. pyogenes is also able to grow in the absence of 

serine and glycine or both when adaptation is allowed (Figure 2B). However, the 

combined omission of glutamine and glutamate, as well as the omission of the pair 

cysteine/cystine or their combination with serine does not allow growth of S. 

pyogenes as shown in Figure 2A. In summary, in CDM-LAB S. pyogenes is 

auxotrophic for 11 out of the 20 proteinogenic amino acids. 

We used the collected amino acid auxotrophy information to assess the consistency 

of the reconstructed metabolic network. We tested S. pyogenes' ability to grow in the 

absence of single amino acids or combinations in silico by blocking the uptake of the 

corresponding amino acid(s) and using FBA. Since the experiments were performed 

in batch cultures we exploited the genome-scale model with default boundaries 

(±1000) to qualitatively predict growth or non-growth (see Materials and Methods). 

The model was able to correctly predict the outcome of almost all leave out 

experiments. However, there were two points of contradiction that we needed to 

resolve during the iterative model refinement step, namely predicting the growth in 

the absence of alanine and in the absence of glycine and serine. Initially, the 

computational results predicted no growth in the absence of alanine in contrast to 

the experimental data. According to KEGG and the genome annotation, S. pyogenes 

can convert glutamate into alanine and asparagine, which can be further 

transformed into aspartate. Although the model included the reaction producing 
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alanine from glutamate (alanine transaminase, EC 2.6.1.2) the reaction was not 

running due to problems with the α-ketoglutarate (AKG) balance. The latter 

compound is produced concomitant with alanine and accumulated in the model. We 

were unable to find any S. pyogenes specific transport protein catalyzing AKG efflux 

or any other AKG consuming reaction resolving this problem. However, since AKG is 

an important precursor for many biomolecules, it is not unlikely that such an 

unknown reaction exists. Therefore, we introduced an artificial demand for α-

ketoglutarate symbolizing a knowledge gap while allowing the model to reproduce 

growth without alanine. 

Furthermore, the model predicted no growth in the absence of glycine. Glycine and 

serine can be converted into one another by glycine hydroxymethyltransferase (EC 

2.1.2.1). To produce glycine from serine, tetrahydrofolate is converted into 

methenyltetrahydrofolate. The latter two compounds are involved in the folate 

biosynthesis and in the one-carbon-pool of folate. There were several reactions 

missing in the latter pathway. After the incorporation of these reactions the model 

predicted growth in the absence of glycine, but not in CDM-LAB with the double 

leave-out of serine and glycine. According to KEGG serine and pyruvate can be 

converted into one another (L-serine deaminase, EC 4.3.1.17). This reaction was 

indicated to be irreversible in the KEGG database. However, in previous 

reconstructions (Becker and Palsson, 2005; Nogales et al., 2008), the reaction is 

assumed to be reversible. This assumption is without doubt questionable since 

according to the eQuilibrator database (http://equilibrator.weizmann.ac.il) the Keq of 

the reaction is in the range of 105. Allowing also the reverse reaction or assuming an 
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alternative yet unknown path interconverting the respective amino acids resolved 

this final problem. 

An overview of the experimentally determined auxotrophies in comparison with 

previously published data (Slade et al., 1951) and with the behaviour of the refined 

genome-scale model is given in Table 4. All in all the experimental findings are in 

good agreement with the computational predictions. We should point out that 

according to literature cysteine, cystine, glycine, proline and serine are essential 

which was neither observed in our experiments nor in the model before (for cysteine, 

cystine, proline and serine) or after refinement (for glycine) (Slade et al., 1951). 

Figure 3 summarizes the possible conversions of amino acids for S. pyogenes in 

growth in CDM-LAB predicted by the genome-scale model and verified by our 

experimental data. 

3.2.3 Predicting a minimal medium 

The reconstructed network was used to predict a minimal medium composition 

which is summarized in Table 5. Here, we want to highlight some central 

components: All essential amino acids and additionally glutamine or glutamate as 

well as cysteine or cystine are required for in silico growth of S. pyogenes. 

Furthermore, guanine or xanthine, which are interconvertible, and adenine are 

essential. Uracil is not required for growth but UTP which can be produced from 

CTP. Inosine can be produced from adenine. Similar to uracil, thymidine is not a 

biomass component but TTP which is produced from UTP. 

If citrate is not supplied, aspartate or asparagine has to be supplied to ensure growth 

of S. pyogenes since the production of asparagine from glutamate requires 
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oxaloacetate which is synthesized from citrate. Additionally, the model requires 

ammonium or ammonia, sulfate, water and protons. 

Thus, there is not one single possible composition of the minimal medium, but 

different possible combinations and the model can be used to verify each of these. 

We experimentally tested the model predictions by growing S. pyogenes in CDM-

LAB leaving out individual or combinations of the predicted non-essential medium 

compounds. Our experiments verify growth in CDM-LAB without the nucleotide 

precursors guanine, uracil, xanthine and combinations thereof as shown in Figure 4. 

We were also able to validate growth of S. pyogenes in CDM-LAB without predicted 

non-essential vitamins, namely biotin, inosine, orotic acid, pyridoxamine, pyridoxine, 

riboflavin and thymidine. Omission of these vitamins lead to about 80 % biomass 

reduction compared to full medium, but still allowed significant growth of the bacteria 

(Figure 4). 

Finally, we evaluated growth of S. pyogenes in a minimal medium leaving out all 

predicted non-essential compounds with and without glucose. However, in both 

cases GAS grew very poorly. Model predictions were based on excess abundance 

of all essential compounds. Thus, the discrepancy between the model and the 

experimental findings in the last test might be caused by limiting medium 

components. 

3.2.4 Essential gene analysis 

To analyse essential genes within the metabolic network of S. pyogenes M49 we 

knocked-out one gene at a time by setting the fluxes through all reactions associated 

with this gene to zero and performing FBA. We defined the effect of each gene on 
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the metabolism based on the objective function value after gene knock-out 

compared to the biomass production flux before knock-out and categorized the 

genes into four categories, namely unaffected, improved, affected and lethal as 

shown in Table 6. Obviously, the presented results strongly depend on the model, 

especially on the chosen objective function and on the accuracy of the implemented 

gene-reaction associations. For most of the genes (289) a knock-out did not 

significantly affect the growth of S. pyogenes. We identified 12 out of 480 genes 

whose deletion inhibited the biomass production rate and 179 gene knock-outs 

completely blocked growth. The gene essentiality analysis results are summarized in 

Table A8. Not surprisingly, among the genes that inhibit biomass production the 

majority of genes is coding for enzymes of the central metabolism like GAPDH, PYK, 

TPI and PGK. However, the fact that these are not essential points to an unexpected 

versatility of the central metabolism. This is not so much the case in amino acid 

metabolism, fatty acid metabolism and nucleotide metabolism, as well as protein 

synthesis in which the majority of gene products of essential genes participate. 

Recently, Le Breton and co-workers performed a screen for genes essential for 

growth under optimal condition in S. pyogenes M1T1 5448 and M49 NZ131 using 

transposon mutagenesis (Le Breton et al., 2015). Based on all 1698 annotated 

genes in the GAS M49 genome, the authors identified 241 essential genes many of 

which are involved in key cellular processes and metabolic pathways such as central 

carbon metabolism and fatty acid synthesis. Here, we predict essential genes in 

metabolic pathways and thus, obviously, these are a subset of the genes determined 

by Le Breton and co-authors. Our analysis yields 179 essential genes mainly 

involved in amino acid metabolism, fatty acid metabolism, nucleotide metabolism 
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and protein synthesis. We found nine genes in central carbon metabolism to be 

essential, for example fructose-bisphosphate aldolase (EC 4.1.2.13), 

phosphofructokinase (EC 2.7.1.11) and enolase (EC 4.2.1.11) which were also 

identified by transposon mutagenesis. Le Breton et al. identified additional essential 

genes in glycolysis such as pyruvate kinase which, according to our model 

predictions, is not essential but slightly compromises growth. 

We compared our essential gene analysis with their results to get a more general 

overview of similarities and discrepancies using Euler diagrams (see Figure 5). 103 

out of the 178 essential genes predicted by the model are also identified as essential 

by Le Breton et al. (Figure 5A), 49 were classified as not conclusive by Le Breton et 

al., and 26 are not-essential according to the transposon mutagenesis results but 

predicted to be essential by the model. We also noted an overlap between the genes 

classified as essential by Le Breton and non-essential genes of the genome-scale 

model (25 genes, see Figure 5B). Discrepancies between predicted and 

experimental determined essential and non-essential genes and vice-versa may 

indicate incorrect gene-reaction rules in the model. 
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4. Discussion 

In this study we presented the first genome-scale metabolic network reconstruction 

for S. pyogenes M49. To guarantee a high-quality of the reconstructed metabolic 

network and the corresponding model we used established networks of related 

organisms as reference networks to obtain an initial reconstruction followed by an 

extensive manual curation phase on our side. We have measured input and output 

fluxes at two differential pH values, 6.5 and 7.5, for the wild type and also created an 

arcA deletion strain and determined its fermentation pattern at pH 7.5. We used the 

developed genome-scale model to analyse the data set. 

As pointed out above, the shift in fermentation and amino acid metabolism is quite 

similar between the wild type at lower pH and the arcA deletion strain. When 

analysing this fact in the model, it became apparent that the increased uptake of 

arginine and serine at lower pH leads to an increased NGAM in the model, since 

both amino acids can be metabolized to yield ATP. We speculate that this increased 

ATP production seen in the model with the applied experimental constraints is used 

to pump out protons when subject to a more acidic environment. Thus, the lower pH 

is – in contrast to literature (LaSarre and Federle, 2011; Liu et al., 2003; Marquis et 

al., 1987; Novák and Loubiere, 2000) – not counterbalanced by direct consumption 

of protons during deamination, since at this pH ammonium is produced during 

deamination without proton consumption. This now readily explains why the arcA 

deletion strain is reacting in a similar way. Due to the lack of arginine metabolism, 

this strain has a lower NGAM which it tries to counterbalance by reacting in a similar 

way than the wildtype at lower pH which has a higher ATP demand. 
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To assess the consistency of the genome-scale model we performed amino acid 

leave-out experiments. The curated model predicted 9 out of 11 essentialities 

correctly. The existing discrepancies led to model refinement and are likely due to 

false annotation and missing annotations in the respective gene databases. Thus, 

folate metabolism was incomplete in the model and had to be completed to allow 

growth on glycine. Growth on alanine was prevented due to AKG accumulation and 

could be enabled by adding an AKG demand reaction. We also compared our 

findings to published amino acid auxotrophy data (Slade et al., 1951). According to 

Slade et al., cysteine, cystine, glycine, proline and serine are essential but our 

experimental data show that S. pyogenes is able to grow without supplying these 

amino acids (see Table 4). In the cases of cysteine, cystine, proline and serine the 

results were very clear whereas the leave out of glycine required repeated 

inoculation (see Figure 2). Therefore, in the latter case, we cannot exclude the 

occurrence of mutations that enabled S. pyogenes to grow on glycine. However, the 

fact that the model also suggests growth in the absence of glycine – at least in the 

presence of folate metabolism – provides further evidence for glycine being non-

essential. The striking discrepancies between literature and our findings might be 

caused by the usage of different media for the omission experiments. As mentioned 

before, the amount and combination of amino acids required for growth is 

characteristic for each LAB and depends upon the medium composition, i.e. upon 

the supplied vitamins. 

The effect of the medium composition has been also analysed when predicting 

minimal media. These can have different compositions since what is essential 

obviously depends again strongly on what else is supplied. A striking example for 
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this fact is the early study by Mickelson et al. (Mickelson, 1964) showing improved 

growth of S. pyogenes in the absence of ASP/ASN due to their interference with 

CO2 utilization. 

We experimentally tested the model predictions regarding the essentiality of 

individual components by monitoring growth in leave-out experiments with predicted 

non-essential components. Growth occurred in all predicted examples. However, 

when setting up an absolute minimal medium leaving out every predicted non-

essential component at the same time, only very poor growth was observed. This 

could be true to the limited availability of individual components in the media 

compared to abundant availability in the model. 

Finally, the analysis of gene essentialities can help in the identification of novel drug 

targets. However, it is important to note that due to methodological restrictions only 

stoichiometric effects can be considered with the employed computational approach. 

Kinetic effects are not tractable and potential vulnerable targets which exist due to 

kinetic effects as the previously suggested GAPN (Levering et al., 2012) will not be 

visible. As indicated by the essentiality analysis central metabolism in S. pyogenes 

seems to be very versatile and able to circumvent knock-outs of enzymes whereas 

this does not hold true for amino acid and nucleotide metabolism. 

We compared the results of our essential gene analysis to a recent screen for genes 

essential for growth under optimal condition in S. pyogenes M1T1 5448 and M49 

NZ131 using transposon mutagenensis (Le Breton et al., 2015). As shown in Figure 

5, most model predictions coincide with the results from the screen. However, there 

are some discrepancies. A false positive result (non-essential gene predicted 

although it is truly essential; 25 genes, Figure 5B) indicates that the reaction in the 
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model is either associated to isozymes but, actually, there are none present in S. 

pyogenes. or the model contains a reaction circumventing the reaction blocked by 

the gene knock-out. A false negative result (essential gene predicted although it is 

truly non-essential; 26 genes, Figure 5A) indicates that the gene-reaction rule 

misses an isozyme. The genome-scale model presents the current knowledge of S. 

pyogenes and, thus, contains knowledge gaps. Consequently, gene-reaction rules 

lack information or contain wrongly listed isozyme information. Although the model 

allows the identification of essential genes the results of such an analysis should be 

carefully examined given that the model does not take kinetic effects into account 

and focuses on a subset of the genome, here 26.8% of the annotated genes. 

All in all, we provide here a manually curated and consistency checked genome-

scale model of the pathogen S. pyogenes which allows the prediction of growth 

under different conditions and a directed search for essential genes. 
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Appendix 

Table A1: CDM-LAB medium. Composition of the chemically defined medium for 

lactic acid bacteria per liter. 

Table A2: Oligonucleotide primers used for the construction of recombinant vector in 

this study. 

Table A3: Experimentally determined metabolite fluxes and corresponding 

calculated flux boundaries. 

Table A4: List of model reactions and metabolites. 

Table A5: List of imbalanced reactions in the S. pyogenes metabolic network 

reconstruction. 

Table A6: Comparison fermentation patterns wild type grown at pH 6.5 and at pH 

7.5. We used FVA to calculate the flux ranges and defined a flux as different if the 

absolute difference of the optimal (optval), minimal (min) or maximal (max) value is 

greater than 10-4 between the two conditions. 

Table A7: Comparison fermentation patterns wild type and arcA knock-out strain. 

We used FVA to calculate the flux ranges and defined a flux as different if the 

absolute difference of the optimal (optval), minimal (min) or maximal (max) value is 

greater than 10-4 between the two conditions. 

Table A8: Essential gene analysis results. 
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Other supplementary files: SBML files containing the genome-scale metabolic 

models of S. pyogenes WT and arcA deletion strain, applied constraints, 

computational code and a readme file. 
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Figure Legends 
Figure 1: Experimentally measured metabolites consumed and produced by S. 
pyogenes wild type (A, B) and arcA knock-out (C, D) in duplicate. The cells were 
anaerobically grown in CDM-LAB in a bioreactor at two different pHs and a dilution 
rate of 0.05 per hour. The metabolite concentrations were normalized by the 
measured culture dry weight. Consumed metabolites have negative values, 
produced ones are represented by positive values. 

Figure 2: Experimental determination of amino acid auxotrophies. Growth of S. 
pyogenes M49 in the absence of several single amino acids or amino acid 
combinations in CDM-LAB. (A) Optical densities after 24 h growth are shown. The y-
axis gives information about the omitted amino acid(s). (B) Repeated re-inoculation 
of cultures grown in the absence of glycine or serine alone or in combination, 
respectively, lead to adaptation to the omissions and significant growth of the 
bacteria in the absence of these amino acids. 

Figure 3: Amino acid conversions as predicted by the model and confirmed by our 
experimental data. Although the reaction transforming serine into cysteine (see 
dashed line) is capable of carrying flux under the simulated conditions, it does not in 
the absence of cysteine and cystine. 

Figure 4: Growth of S. pyogenes M49 in CDM-LAB minimal variants. Optical density 
after 24 h growth in full CDM-LAB was set to 100% and all other values were related 
accordingly. Experimental data are shown in dark grey, model predictions are shown 
in light grey. Full=CDM-LAB; G=guanine; U=uracil; X=xanthine; non-essential 
vitamins=biotin, inosine, orotic acid, pyridoxamine, pyridoxine, riboflavin; 
Minimal=CDM-LAB w/o alanine, asparagine, aspartate, glutamate, glycine, proline, 
serine, acetate, thymidine, xanthine, uracil, bicarbonate, biotin, inosine, orotic acid, 
pyridoxamine, pyridoxine, riboflavin. Experimental data represent mean values and 
standard deviations of at least four independent experiments. 

Figure 5: Comparison essential genes identified by Le Breton and coworkers (Le 
Breton et al., 2015) and by our computational approach. Panel A shows an Euler 
diagram of Le Breton's gene classification and the genes classified as essential by 
the genome-scale model. Panel B displays an Euler diagram of Le Breton's gene 
classification and the genes classified as non-essential by the genome-scale model. 
For each set, we give the number of genes intersecting with other sets and the 
number of genes without an overlap to any other set. Abbreviations: C, critical 
genes; E, non-essential genes; NC, non-conclusive genes; NE, non-essential genes; 
Model E/NE, essential/non-essential genes predicted by the genome-scale mode 



Figure 1: Experimentally measured metabolites consumed and produced by S. pyogenes wild-type at pH 6.5 and 7.5 

(A, B) and arcA knock-out at pH 7.5 in comparison to wild-type at pH 7.5 (C, D) in duplicate. The cells were 

anaerobically grown in CDM-LAB medium in a bioreactor at two different pHs and a dilution rate of 0.05 per hour. The 

metabolite concentrations were normalized by the measured culture dry weight. Consumed metabolites have negative

values, produced ones are represented by positive values.



Figure 2: Experimental determination of amino acid auxotrophies. Growth of  S. pyogenes M49 591 in the

absence  of  several  single  amino  acids  or  amino  acid  combinations  in  CDM-LAB medium.  (A)  Optical

densities after 24 h growth are shown. The y-axis gives information about the omitted amino acid(s). All ODs

were averaged over three data sets, and the standard deviations are displayed. (B) Repeated re-inoculation

of cultures grown in the absence of glycine or serine alone or in combination, respectively, lead to adaptation

to the omissions and significant growth of the bacteria in the absence of these amino acids.



Figure 3: Amino acid conversions as predicted by the model  and confirmed by our experimental  data.  Although the

reaction transforming serine into cysteine (see dashed line) is capable of carrying flux under the simulated conditions, it

does not in the absence of cysteine and cystine.



 

Figure 4: Growth of S. pyogenes M49 in CDM-LAB minimal variants. Optical density after 24 h growth in 

full CDM-LAB was set to 100% and all other values were related accordingly. Experimental data are 

shown in dark grey, model predictions are shown in light grey. Full=CDM-LAB; G=guanine; U=uracil; 

X=xanthine; non-essential vitamins=biotin, inosine, orotic acid, pyridoxamine, pyridoxine, riboflavin; 

Minimal=CDM-LAB w/o alanine, asparagine, aspartate, glutamate, glycine, proline, serine, acetate, 

thymidine, xanthine, uracil, bicarbonate, biotin, inosine, orotic acid, pyridoxamine, pyridoxine, riboflavin. 

Experimental data represent mean values and standard deviations of at least four independent 

experiments. 
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Tables 

Table 1: Characteristics of the S. pyogenes M49 genome-scale metabolic model in 

terms of genes, reactions and metabolites. 

Genes 
 Genome (NCBI genome) 1788 

 Model 480 (26.8%) 

Reactions 

Total 576 

 Non-gene associated 61 

 Exchange 69 

 Transport 103 

 Balanced 501 

Metabolites 

Total 558 

 Intracellular 450 

 Extracellular 108 

 

Table 2: Reaction and metabolite characteristics of the S. pyogenes M49 genome-

scale metabolic model for different constraints. We analysed the complete model 

without any flux constraints and the model used to simulate growth of wild type and 

arcA knock-out mutant on CDM-LAB at pH 6.5 and 7.5. 

  
Complete 
network 

WT 
pH 6.5 

WT 
pH 7.5 

arcA 
pH 7.5 

Reactions 

Blocked 182 199 190 201 

Essential 188 221 214 216 

Active 273 291 281 275 

Inactive 295 285 295 301 

Metabolites Gap 138 139 138 139 
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Table 3: Reactions involved in circulations. For each reaction involved in loops the 

model equation, the lower and upper boundaries, and the minimum and maximum 

possible flux through the reaction are given. Additionally, the last column gives the 

solution applied to the model constraints to prevent the circulation. 

  Boundaries FVA  

Reaction Equation Lower upper min max Solution

GK1 atp + gmp <==> adp + gdp -1000 1000 -1000 1000 LB = 0 

GK2 datp + gmp <==> dadp + gdp -1000 1000 -1000 1000 LB = 0 

NDPK8 atp + dadp <==> adp + datp -1000 1000 -1000 1000 LB = 0 

DHORD1 dhor-S + o2 <==> h2o2 + orot -1000 1000 -1000 0 LB = 0 

DHORD6 dhor-S + nad <==> h + nadh + orot -1000 1000 0 1000  

NOX1 h + nadh + o2 --> h2o2 + nad 0 1000 0 1000  

LOXL lac-L + o2 --> h2o2 + pyr 0 1000 0 1000  

LDH_L lac-L + nad <==> h + nadh + pyr -1000 1000 -1000 0  

G3PO glyc3p + o2 --> dhap + h2o2 0 1000 0 1000  

G3PD1 glyc3p + nad <==> dhap + h + nadh -1000 1000 -1000 0  

GARFT_met methf + h20 + gar <==> fgam + h + thf 0 1000 0 1000  

MTHFC h2o + methf <==> 10fthf + h -1000 1000 -1000 0 LB = 0 

GARFT 10fthf + gar <==> fgam + h + thf -1000 1000 -1000 0  
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Table 4: Comparison of essential (A) and non-essential (P) amino acids for S. 

pyogenes between literature data (Slade, (Slade et al., 1951), our experimental data 

(Exp) and the genome-scale model predictions (GSM). Slade et al. performed single 

leave-out experiments but did not omit combination of amino acids at one time 

indicated by a blank field. 

 

A
LA

 

A
R

G
 

A
S

N
 

A
S

P
 

C
Y

S
 

C
Y

N
 

G
LN

 

G
LU

 

G
LY

 

H
IS

 

IL
E

 

LE
U

 

LY
S

 

M
E

T
 

P
H

E
 

P
R

O
 

S
E

R
 

T
H

R
 

T
R

P
 

T
Y

R
 

V
A

L
 

C
Y

S
/C

Y
N

 

G
LU

/G
L

N
 

G
LY

/S
E

R
 

A
S

N
/A

S
P

 

C
Y

N
/C

Y
S

/S
E

R
 

Slade P A P P A A P P A A A A A A A A A A A A A      

Exp P A P P P P P P P A A A A A A P P A A A A A A P P A

GSM P A P P P P P P P A A A A A A P P A A A A A A P P A



52 

 

Table 5: Minimal medium composition. Using FBA we categorized the CDM-LAB 

compounds as essential or non-essential. Some components are interconvertible, 

e.g. cystine and cysteine, and only one of these are required for in silico growth. 

 Essential compounds Non-essential compounds 

Amino acid mix Arginine Alanine

 Cystine or cysteine Asparagine

 Glutamine or glutamate Aspartate

 Histidine Cysteine or cystine 

 Isoleucine Glutamate or glutamine 

 Leucine Glycine

 Lysine Proline

 Methionine Serine

 Phenylalanine

 Threonine

 Tryptophan

 Tyrosine 

 Valine 

AGU mix Adenine Uracil

 Guanine or xanthine Xanthine or guanine 

Vitamins Aminobenzoate Biotin

 Ascorbic acid Inosine

 Nicotinic acid Orotic acid

 Pantothenate Pyridoxamine

 Thiamine Pyridoxine

  Riboflavin

  Thymidine

Other Citrate Acetate

 Phosphate Bicarbonate

 Ammonium or ammonia Glucose

 Sulfate 

 Water 

 Protons 
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Table 6: Essential gene analysis. To analyse essential genes within the metabolic 

network of S. pyogenes M49 we knocked-out each gene sequentially. We defined 

the effect of each gene on the metabolism based on the objective function value 

after gene knock-out compared to the biomass production flux before knock-out and 

categorized the genes into categories. 

Objective value in % 
of original value 

Category Quantity 

0 – 5 % Lethal 179 

5 – 95 % Affected 12 

95% – 105 % Unaffected 289 

> 105 % Improved 0 

 


